Mitochondrial Rhomboid PARL Regulates Cytochrome c Release during Apoptosis via OPA1-Dependent Cristae Remodeling
نویسندگان
چکیده
Rhomboids, evolutionarily conserved integral membrane proteases, participate in crucial signaling pathways. Presenilin-associated rhomboid-like (PARL) is an inner mitochondrial membrane rhomboid of unknown function, whose yeast ortholog is involved in mitochondrial fusion. Parl-/- mice display normal intrauterine development but from the fourth postnatal week undergo progressive multisystemic atrophy leading to cachectic death. Atrophy is sustained by increased apoptosis, both in and ex vivo. Parl-/- cells display normal mitochondrial morphology and function but are no longer protected against intrinsic apoptotic death stimuli by the dynamin-related mitochondrial protein OPA1. Parl-/- mitochondria display reduced levels of a soluble, intermembrane space (IMS) form of OPA1, and OPA1 specifically targeted to IMS complements Parl-/- cells, substantiating the importance of PARL in OPA1 processing. Parl-/- mitochondria undergo faster apoptotic cristae remodeling and cytochrome c release. These findings implicate regulated intramembrane proteolysis in controlling apoptosis.
منابع مشابه
OPA1 and PARL Keep a Lid on Apoptosis
A change in the shape of mitochondrial cristae must take place to attain rapid and complete release of cytochrome c during apoptosis. In this issue of Cell, Cipolat et al. and Frezza et al. (2006) show that a rhomboid intramembrane protease PARL and a dynamin-related protein OPA1 are critical regulators of cristae remodeling.
متن کاملDrp1-dependent mitochondrial fission via MiD49/51 is essential for apoptotic cristae remodeling
Mitochondrial fission facilitates cytochrome c release from the intracristae space into the cytoplasm during intrinsic apoptosis, although how the mitochondrial fission factor Drp1 and its mitochondrial receptors Mff, MiD49, and MiD51 are involved in this reaction remains elusive. Here, we analyzed the functional division of these receptors with their knockout (KO) cell lines. In marked contras...
متن کاملDrp1-dependent mitochondrial fission via MiD49/51 is essential for apoptotic cristae remodeling
Cytochrome c release from the cristae into the cytoplasm constitutes the key step of intrinsic apoptosis (Frank et al., 2001; Detmer and Chan, 2007). A majority of total cytochrome c is encapsulated within the mitochondrial cristae folds that are connected to the intermembrane space (IMS) by relatively narrow structures named cristae junctions. At the early phase of intrinsic apoptosis, apoptot...
متن کاملThe Opa1-Dependent Mitochondrial Cristae Remodeling Pathway Controls Atrophic, Apoptotic, and Ischemic Tissue Damage
Mitochondrial morphological and ultrastructural changes occur during apoptosis and autophagy, but whether they are relevant in vivo for tissue response to damage is unclear. Here we investigate the role of the optic atrophy 1 (OPA1)-dependent cristae remodeling pathway in vivo and provide evidence that it regulates the response of multiple tissues to apoptotic, necrotic, and atrophic stimuli. G...
متن کاملOPA1 Controls Apoptotic Cristae Remodeling Independently from Mitochondrial Fusion
Mitochondria amplify activation of caspases during apoptosis by releasing cytochrome c and other cofactors. This is accompanied by fragmentation of the organelle and remodeling of the cristae. Here we provide evidence that Optic Atrophy 1 (OPA1), a profusion dynamin-related protein of the inner mitochondrial membrane mutated in dominant optic atrophy, protects from apoptosis by preventing cytoc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 126 شماره
صفحات -
تاریخ انتشار 2006